What is methamphetamine (meth)?

Meth is a powerful central nervous system stimulant and one of a family of drugs known as amphetamines.

Meth is a synthetic (or man-made) drug that can be taken orally (swallowed), inhaled (snorted), smoked or injected. The way meth is taken (route of administration) can influence the rate of addiction and disability caused by using the drug. Smoking and injecting meth result in the largest amounts of drug being delivered most rapidly to the brain and central nervous system. Any way of using meth is extremely dangerous.

Depending on the method of manufacturing, meth may range in color from white to brown; pink to red or in various shades of yellow or green. Meth can come in pill form, powder or chunks. Common street names for meth include: "speed", "chalk", "ice", "crystal", "crank" and "glass". Crystal meth resembles rock candy, or chunks of ice or crystal. Seventy to eighty percent of the meth used illegally in Minnesota comes from other states. Twenty to thirty percent of the illegal meth in Minnesota is made in clandestine labs.

Meth is extremely addictive. Treatment and recovery may be complicated by physical and mental illness, including prolonged depression.

Health effects

Immediate (short-term) effects of methamphetamine abuse may include:

- Increased attention and decreased fatigue
- Increased activity
- Decreased appetite
- Euphoric feeling and a "rush"
- Increased respiratory rate
- Dangerously high body temperature
- Convulsions

Long-term (chronic) effects of methamphetamine abuse may include:

- Anxiety and anxiousness
- Severe weight loss
- Changes to brain and central nervous system
- Damage to heart or other major organs
- Tremor or uncontrolled motor activity
- Hallucinations
- Mood disturbances, including homicidal or suicidal thinking
- Violent and/or paranoid behavior
- Amphetamine psychosis
Symptoms of withdrawal may include:

- Depression
- Anxiety
- Fatigue
- Paranoia
- Aggression
- Intense drug craving

What is a meth lab?

Meth can be manufactured in a clandestine drug lab (meth lab) in a variety of indoor and outdoor locations, including houses, apartment buildings, motels, vehicles, wooded areas or fields. Meth is manufactured (or “cooked”) by applying common, readily available materials to one of several basic recipes.

Meth "recipes" can be easily obtained through the Internet or by associating with other cooks. There are hundreds of chemical products and substances that are used interchangeably to produce meth. The substitution of one chemical for another in meth recipes may cause the process to be more hazardous (resulting in fire or explosion) or may result in a tainted, final product with unwanted or dangerous effects.

Many dangerous chemical ingredients are used to make meth. The cooking process causes chemical residues and meth to be deposited on surfaces and household belongings. Also, chemical by-products such as toxic phosphine gas may be formed during meth manufacture. This may occur through planned chemical interaction, or by processing errors, such as increasing cooking temperatures too rapidly.

Every meth "recipe" starts with over-the-counter medications that include pseudoephedrine or ephedrine in their contents. The pills are crushed and mixed with other chemicals in the process of cooking meth. Various meth recipes include combinations of volatile organic compounds (VOCs), acids, bases, metals, solvents and salts. Making meth with these chemicals can result in explosions, chemical fires, and the release of toxic gases.

Meth cooking also produces solid and liquid wastes that can contaminate a building and its contents, or the groundwater or soil where they are dumped.
What are the potential health effects from exposure to a meth lab?

Health effects caused by exposure to meth lab chemicals depend on: (1) the lab process and chemicals used; (2) the amount of chemical and length of exposure; and (3) the age and health of the person exposed. Chemicals may enter the body by being breathed, eaten, or absorbed through the skin.

An acute exposure is one that occurs over a relatively short period of time. Acute exposure to meth lab chemicals can cause shortness of breath, cough, chest pain, dizziness, lack of coordination, chemical irritation, or burns to skin, eyes, nose and mouth. Death could result when exposure is to a particularly toxic chemical or the person exposed is particularly vulnerable. Acute exposures can occur in non-drug users during or immediately after ‘cooking’.

Less severe exposures can result in symptoms such as headache, nausea, dizziness, and fatigue or lethargy. These symptoms have been known to occur in people exposed to active labs, but also in people — particularly law enforcement personnel and other first responders — who have entered a drug lab before the site has been cleaned or ventilated. These less-severe symptoms usually go away after several hours of exposure to fresh air.

Exposures to lab chemicals or byproducts over a long period of time - called chronic exposures - may cause both long-term and short-term health effects. Long-term exposures to VOCs may result in liver and kidney damage, neurological problems, and increased risk of cancer. Even at low levels, exposures for long periods by people living in a former lab site could result in serious health effects.

How do I recognize a meth lab?

Clues that may indicate illegal production or sales of drugs, including meth, are:

- Frequent visitors at all times of the day or night,
- Occupants appear unemployed, yet make cash purchases and payments,
- Occupants are unfriendly, appear secretive about activities, or lie and display odd or paranoid behavior,
- Covering or blacking-out of windows,
- Other security measures, such as signs posted around the property, fences and cameras or baby monitors outside of buildings,
- Burn pits, stained soil or dead vegetation indicating dumping of chemicals or waste,
- Strong chemical odors, including sweet, bitter, ammonia or solvent smells at various and random times during the day and/or night,
- Waste in trash, pits or piles, such as:
 - Packaging from over-the-counter ephedrine or pseudoephedrine cold, diet or allergy pills
Empty containers from: antifreeze, white gas, ether, starting fluids, Freon, lye or drain openers, paint thinner, acetone, or alcohol
Compressed gas cylinders, or camp stove (Coleman) fuel containers
Packaging from epsom salts or rock salt
Anhydrous ammonia tanks; propane tanks or coolers containing anhydrous ammonia
Pyrex/glass/Corning containers, with dried chemical deposits remaining
Bottles or containers connected with rubber hosing and duct tape
Coolers, thermos bottles, or other cold storage containers
Respiratory masks and filters or dust masks
Funnels, hosing and clamps
Coffee filters, pillow cases or bed sheets stained red (used to filter red phosphorous), or containing a white powdery residue

What to do if you find a meth lab

An individual who believes he or she has discovered an illegal drug lab or the site of an abandoned lab should immediately notify local law enforcement (Dial 911) and should not enter the area of the suspected lab. Anyone who inadvertently enters a lab should back out immediately without disturbing the cooking process, chemicals or equipment.

Environmental Effects

The production of methamphetamine may create serious environmental hazards, indoors and out.

Various meth recipes include combinations of volatile organic compounds (VOCs), corrosives, metals, solvents and salts. Some of these chemicals include acetone, starting fluid, Freon, hexane (Coleman fuel), methanol, toluene, white gas, xylene, anhydrous ammonia, hydriodic acid (iodine), hydrochloric acid (muriatic acid), phosphine, sodium hydroxide (lye), sulfuric acid (drain cleaner), iodine, lithium metal, red phosphorus, yellow phosphorus, and sodium metal.

Making meth with these chemicals can result in explosions, chemical fires, and the release of toxic gases. Meth cooking also produces solid and liquid wastes that can contaminate a building and its contents. The dumping of those wastes on the ground, down drains, or down sewers can cause contamination of soil, ground water, lakes, and rivers.

Retrieved from the Minnesota Department of Health
http://www.health.state.mn.us/divs/eh/meth/methdrug.html (March 20, 2007)
METH LABS SEIZED SINCE 2000:

<table>
<thead>
<tr>
<th>Year</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labs Seized</td>
<td>374</td>
<td>690</td>
<td>999</td>
<td>1260</td>
<td>1549</td>
<td>939</td>
</tr>
</tbody>
</table>

2005 Represents seizures from 1/1/05 - 11/30/05

LOCATION OF METH:
95% Rural
5% Urban

ORIGIN OF METH:
The first meth lab was located in 1992 in Greene County, IN. There has been a significant increase in meth labs seized statewide from 43 in 1998 to a record high in 2004 of 1,549. In response to the increase of meth in Indiana, Governor Mitch Daniels established the Meth-Free Indiana Coalition, which has developed an information sharing tool to increase reporting and promote communication between state and local agencies. A website has also been created to easily share information and increase public awareness.

IMPACT OF LAW LIMITING SALE OF COLD MEDICINE:
SEA 444, which went into effect July 1, 2005, regulates the display and sale of products containing ephedrine and pseudoephedrine. These products are to be kept in a locked display case or an area that is not accessible to customers behind the counter. Purchaser information is tracked through retailer log books and available for law enforcement monitoring. During July through November of 2004 there were 415 labs seized. During July though November of 2005 there were 296 labs seized for a 28% reduction.

METH WATCH PROGRAM:
Indiana’s Meth Watch program was implemented in October of 2004. The program partners with law enforcement in order to train employees, display Meth Watch materials, create a procedure for reporting suspicious activity, and provide information to customers who want to learn more about Meth Watch. To date, 8,000 Meth Watch kits have been distributed throughout the state for local retailers.

IMPACT OF METH ON TRAFFIC SAFETY:
Indiana is currently implementing training for law enforcement officers concerning response to rolling meth labs, interdiction traffic stops, and how to appropriately identify the warning signs during a routine traffic stop.

LAW ENFORCEMENT RESPONSE:
A basic 4-hour training class is provided to all law enforcement academies by the Indiana State Police (ISP), which outlines the dangers of meth labs and information on proper procedures to follow when meth labs are located. Task Forces have been assembled to address the meth problem at the county level and provide reports to inform policy and practice. ISP has also developed a statewide Meth Suppression Unit in order to share information with a variety of other agencies concerning criminal targets, investigative ideas, and methods of detection, leads, and criminal intelligence.

CHILDREN IN SOCIAL SERVICE SYSTEM DUE TO METH:
Indiana recently passed (July 1, 2005) a law allowing the tracking of children in the Social Service System due to meth, however it is currently too early to provide any empirical results.

PROTECTING DRUG ENDANGERED CHILDREN:
Drug Endangered Children Protocols were developed and Implemented in July of 2005. The protocols, developed by the DEC Advisory Council, are implemented at the local level utilizing available local resources and are consistent with the National Alliance of Drug Endangered Children protocols.

REHABILITATION AND TREATMENT:
The Indiana Department of Correction, in cooperation with the Indiana State Department of Health, has recently opened the Clean Lifestyle is Freedom Forever (CLIFF) program. There are currently programs at 2 male facilities with 204 beds each, and 1 program in a female facility with 80 beds. The first male facility opened in April of 2005 and the second in June of 2005. The female facility opened in September of 2005. The first graduating class of 22 male offenders was held in October.

CLEANING UP METH LABS:
The Indiana Department of Environmental Management is currently going through the administrative law process of implementing procedures related to the clean-up of sites associated with the manufacturing of controlled substances. The action was mandated in the Methamphetamine Protection Act (SEA 444) that became effective July 1, 2005.

BEST PRACTICES:
- SEA 444
- Maintenance of the Meth Watch Program
- Consistently updating state list of meth chemical reagents and precursors
- Development of a statewide Methamphetamine Data Repository for information sharing
- Governor’s Meth-Free Indiana Coalition

For more information about Indiana’s efforts to fight the war against meth visit www.methfreeindiana.org or call 844-855-METH (6384)
Indiana State Police Lab Seizures 2004 – 2006

YTD thru 12/31
2006 = 758
2005 = 990
2004 = 1113
Indiana State Police Lab Seizures - 2006

Number of Labs Seized

Jan: 80
Feb: 71
Mar: 116
Apr: 87
May: 77
Jun: 49
Jul: 57
Aug: 57
Sep: 43
Oct: 42
Nov: 40
Dec: 39
Indiana State Police
Children Affected for 2006

Number of Children Affected

<table>
<thead>
<tr>
<th>Month</th>
<th>January</th>
<th>February</th>
<th>March</th>
<th>April</th>
<th>May</th>
<th>June</th>
<th>July</th>
<th>August</th>
<th>September</th>
<th>October</th>
<th>November</th>
<th>December</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>18</td>
<td>9</td>
<td>29</td>
<td>4</td>
<td>11</td>
<td>6</td>
<td>13</td>
<td>29</td>
<td>6</td>
<td>10</td>
<td>7</td>
<td>2</td>
</tr>
</tbody>
</table>
Indiana State Police Drug Lab Arrests 2004 - 2006

Graph showing the number of arrests across different months from January 2004 to December 2006, with data points for each year.
Indiana State Police Drug Lab Arrests for 2006

Number of Arrests

Jan 59
Feb 44
Mar 69
Apr 56
May 39
Jun 37
Jul 39
Aug 51
Sep 35
Oct 31
Nov 37
Dec 10